149 research outputs found

    PKind: A parallel k-induction based model checker

    Full text link
    PKind is a novel parallel k-induction-based model checker of invariant properties for finite- or infinite-state Lustre programs. Its architecture, which is strictly message-based, is designed to minimize synchronization delays and easily accommodate the incorporation of incremental invariant generators to enhance basic k-induction. We describe PKind's functionality and main features, and present experimental evidence that PKind significantly speeds up the verification of safety properties and, due to incremental invariant generation, also considerably increases the number of provable ones.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    A New Approach for Combining Decision Procedures for the Word Problem, and Its Connection to the Nelson-Oppen Combination Method

    Get PDF
    The Nelson-Oppen combination method can be used to combine decision procedures for the validity of quantifier-free formulae in first-order theories with disjoint signatures, provided that the theories to be combined are stably infinite. We show that, even though equational theories need not satisfy this property, Nelson and Oppen's method can be applied, after some minor modifications, to combine decision procedures for the validity of quantifier-free formulae in equational theories. Unfortunately, and contrary to a common belief, the method cannot be used to combine decision procedures for the word problem. We present a method that solves this kind of combination problem. Our method is based on transformation rules and also applies to equational theories that share a finite number of constant symbols

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    Extending SMTCoq, a Certified Checker for SMT (Extended Abstract)

    Full text link
    This extended abstract reports on current progress of SMTCoq, a communication tool between the Coq proof assistant and external SAT and SMT solvers. Based on a checker for generic first-order certificates implemented and proved correct in Coq, SMTCoq offers facilities both to check external SAT and SMT answers and to improve Coq's automation using such solvers, in a safe way. Currently supporting the SAT solver zChaff, and the SMT solver veriT for the combination of the theories of congruence closure and linear integer arithmetic, SMTCoq is meant to be extendable with a reasonable amount of effort: we present work in progress to support the SMT solver CVC4 and the theory of bit vectors.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Non-Disjoint Unions of Theories and Combinations of Satisfiability Procedures: First Results

    Get PDF
    In this paper we outline a theoretical framework for the combination of decision procedures for the satisfiability of constraints with respect to a constrainttheory. We describe a general combination method which, given a procedure that decides constraint satisfiability with respect to a constraint theory T1{\cal T}_1 and one that decides constraint satisfiability with respect to a constraint theory T2{\cal T}_2, is able to produce a procedure that (semi-)decides constraint satisfiability with respect to the union of T1{\cal T}_1 and T2{\cal T}_2. We also provide some model-theoretic conditions on the constraint language and the component constraint theories for the method to be sound and complete, with special emphasis on the case in which the signatures of T1{\cal T}_1 and T2{\cal T}_2 are non-disjoint
    • …
    corecore